又大又硬又爽又粗又快的视频免费|男人扒开添女人下免费视频|欧美日韩视频免费播放|美女扒开屁股让男人桶视频免费

  • <dl id="qmwet"><ins id="qmwet"></ins></dl>
    <sup id="qmwet"><menu id="qmwet"></menu></sup>
  • <input id="qmwet"></input>
    <sup id="qmwet"><menu id="qmwet"></menu></sup>
  • 返回
    頂部

    《Microeconometrics Using Stata, Second Edition》
    《使用 Stata 的微觀計量經濟學,第二版》

    A. Colin Cameron 和 Pravin K. Trivedi (作者)


    基本信息




    ? 出版社: Stata Press
    ? 平裝: 1675頁
    ? 語種: 英文
    ? ISBN: 9781597183598
    ? 條形碼: 9781597183598
    ? 電子版:有








    來自 Stata 技術組的評論


    每一位使用 Stata 的應用經濟研究人員和每一位教授或研究微觀計量經濟學的人都將從 Cameron 和 Trivedi 的兩本書中受益。它們是使用 Stata 的微觀計量經濟學方法背后的理論和直覺的寶貴參考。熟悉 Cameron 和 Trivedi 的《 Microeconometrics: Methods and Applications》的人會發現同樣的嚴謹性。那些熟悉上一版《Microeconometrics Using Stata》的人會發現熟悉的重點集中在 Stata 命令、它們的解釋、它們與微觀計量經濟學理論的聯系,以及計算概念的介紹,這些概念應該是任何研究人員工具箱的一部分。讀者會發現更多內容——所以第二版增加了第二卷。
    新版涵蓋了自 2010 年上一版以來出現的與微觀計量經濟學相關的所有新 Stata 發展。例如,讀者將找到關于治療效果、持續時間模型、空間自回歸模型、套索和貝葉斯分析的全新章節。但作者并沒有就此止步。他們還討論了Stata社區提供的最新微觀經濟計量方法。


    Volume I: Cross-Sectional and Panel Regression Methods

    第一卷介紹了基本的微觀計量經濟學方法,包括橫截面數據的線性和非線性方法以及有無內生性的線性面板數據,以及假設和模型規格測試概述。除此之外,它還教授引導和模擬方法、分位數回歸、有限混合模型和非參數回歸。它還包括對基本 Stata 概念和編程的介紹,以及對 Mata 進行矩陣編程和基本優化的介紹。


    Volume II: Nonlinear Models and Causal Inference Methods

    第二卷以第一卷中介紹的方法為基礎,引導讀者了解在經濟研究中有用的各種更先進的方法。首先介紹非線性優化方法,然后深入研究具有和不具有內生性的二元結果方法;有無內生性的tobit和選擇模型估計;選擇模型估計;計算條件均值的有無內生性的數據,計算條件分位數的數據;生存數據;具有和不具有內生性的非線性面板數據方法;外源和內源性治療效果;空間數據建模;半參數回歸;用于預測和推理的套索;和貝葉斯計量經濟學。
    隨著其對現代計量經濟學方法的百科全書式覆蓋,以及演示如何在Stata中實施這些方法的許多工作示例,《Microeconometrics Using Stata, Second Edition》是一本,讀者將為他們面臨的每個新項目或分析反復閱讀參考的書籍。它是應用研究人員和修讀觀計量經濟學課程的人員的重要參考。

    關于作者

    Colin Cameron 是加州大學戴維斯分校(University of California–Davis)的經濟學教授,他在該校教授本科和研究生的計量經濟學,以及健康經濟學的本科課程。他在歐洲、澳大利亞、亞洲和南美洲開設短期課程。他的研究興趣是微觀計量經濟學,尤其是具有聚類誤差的回歸穩健推斷。他目前是《Stata Journal》的副主編。
    Pravin K. Trivedi 是印第安納大學布盧明頓分校(Indiana University–Bloomington)的杰出名譽教授和昆士蘭大學經濟學院(School of Economics at the University of Queensland)的名譽教授。在他的學術生涯中,他曾在美國、英國、歐洲和澳大利亞教授本科和研究生水平的計量經濟學。他的研究興趣包括微觀計量經濟學和健康經濟學。他于 2000 年至 2007 年擔任《Econometrics Journal》的共同主編,并于 1986 年至 2015 年擔任《Journal of Applied Econometrics》的副主編。他與David Zimmer合著了《Copula Modeling in Econometrics: An Introduction for Practitioners》(2007 年)。
    Cameron 和 Trivedi 的聯合工作包括關于計量經濟模型和計數數據檢驗的研究文章、計量經濟學會專著《Regression Analysis of Count Data》和研究生級的書籍《Microeconometrics: Methods and Applications》。

    目錄

    List of tables
    List of figures
    Preface to the Second Edition
    Preface to the First Edition
    1 Stata basics
    1.1 Interactive use
    1.2 Documentation
    1.3 Command syntax and operators
    1.4 Do-files and log files
    1.5 Scalars and matrices
    1.6 Using results from Stata commands
    1.7 Global and local macros
    1.8 Looping commands
    1.9 Mata and Python in Stata
    1.10 Some useful commands
    1.11 Template do-file
    1.12 Community-contributed commands
    1.13 Additional resources
    1.14 Exercises
    2 Data management and graphics
    2.1 Introduction
    2.2 Types of data
    2.3 Inputting data
    2.4 Data management
    2.5 Manipulating datasets
    2.6 Graphical display of data
    2.7 Additional resources
    2.8 Exercises
    3 Linear regression basics
    3.1 Introduction
    3.2 Data and data summary
    3.3 Transformation of data before regression
    3.4 Linear regression
    3.5 Basic regression analysis
    3.6 Specification analysis
    3.7 Specification tests
    3.8 Sampling weights
    3.9 OLS using Mata
    3.10 Additional resources
    3.11 Exercises
    4 Linear regression extensions
    4.1 Introduction
    4.2 In-sample prediction
    4.3 Out-of-sample prediction
    4.4 Predictive margins
    4.5 Marginal effects
    4.6 Regression decomposition analysis
    4.7 Shapley decomposition of relative regressor importance
    4.8 Differences-in-differences estimators
    4.9 Additional resources
    4.10 Exercises
    5 Simulation
    5.1 Introduction
    5.2 Pseudorandom-number generators
    5.3 Distribution of the sample mean
    5.4 Pseudorandom-number generators: Further details
    5.5 Computing integrals
    5.6 Simulation for regression: Introduction
    5.7 Additional resources
    5.8 Exercises
    6 Linear regression with correlated errors
    6.1 Introduction
    6.2 Generalized least-squares and FGLS regression
    6.3 Modeling heteroskedastic data
    6.4 OLS for clustered data
    6.5 FGLS estimators for clustered data
    6.6 Fixed-effects estimator for clustered data
    6.7 Linear mixed models for clustered data
    6.8 Systems of linear regressions
    6.9 Survey data: Weighting, clustering, and stratification
    6.10 Additional resources
    6.11 Exercises
    7 Linear instrumental-variables regression
    7.1 Introduction
    7.2 Simultaneous equations model
    7.3 Instrumental-variables estimation
    7.4 Instrumental-variables example
    7.5 Weak instruments
    7.6 Diagnostics and tests for weak instruments
    7.7 Inference with weak instruments
    7.8 Finite sample inference with weak instruments
    7.9 Other estimators
    7.10 Three-stage least-squares systems estimation
    7.11 Additional resources
    7.12 Exercises
    8 Linear panel-data models: Basics
    8.1 Introduction
    8.2 Panel-data methods overview
    8.3 Summary of panel data
    8.4 Pooled or population-averaged estimators
    8.5 Fixed-effects or within estimator
    8.6 Between estimator
    8.7 Random-effects estimator
    8.8 Comparison of estimators
    8.9 First-difference estimator
    8.10 Panel-data management
    8.11 Additional resources
    8.12 Exercises
    9 Linear panel-data models: Extensions
    9.1 Introduction
    9.2 Panel IV estimation
    9.3 Hausman–Taylor estimator
    9.4 Arellano–Bond estimator
    9.5 Long panels
    9.6 Additional resources
    9.7 Exercises
    10 Introduction to nonlinear regression
    10.1 Introduction
    10.2 Binary outcome models
    10.3 Probit model
    10.4 MEs and coefficient interpretation
    10.5 Logit model
    10.6 Nonlinear least squares
    10.7 Other nonlinear estimators
    10.8 Additional resources
    10.9 Exercises
    11 Tests of hypotheses and model specification
    11.1 Introduction
    11.2 Critical values and p-values
    11.3 Wald tests and confidence intervals
    11.4 Likelihood-ratio tests
    11.5 Lagrange multiplier test (or score test)
    11.6 Multiple testing
    11.7 Test size and power
    11.8 The power onemean command for multiple regression
    11.9 Specification tests
    11.10 Permutation tests and randomization tests
    11.11 Additional resources
    11.12 Exercises
    12 Bootstrap methods
    12.1 Introduction
    12.2 Bootstrap methods
    12.3 Bootstrap pairs using the vce(bootstrap) option
    12.4 Bootstrap pairs using the bootstrap command
    12.5 Percentile-t bootstraps with asymptotic refinement
    12.6 Wild bootstrap with asymptotic refinement
    12.7 Bootstrap pairs using bsample and simulate
    12.8 Alternative resampling schemes
    12.9 The jackknife
    12.10 Additional resources
    12.11 Exercises
    13 Nonlinear regression methods
    13.1 Introduction
    13.2 Nonlinear example: Doctor visits
    13.3 Nonlinear regression methods
    13.4 Different estimates of the VCE
    13.5 Prediction
    13.6 Predictive margins
    13.7 Marginal effects
    13.8 Model diagnostics
    13.9 Clustered data
    13.10 Additional resources
    13.11 Exercises
    14 Flexible regression: Finite mixtures and nonparametric
    14.1 Introduction
    14.2 Models based on finite mixtures
    14.3 FMM example: Earnings of doctors
    14.4 Global polynomials
    14.5 Regression splines
    14.6 Nonparametric regression
    14.7 Partially parametric regression
    14.8 Additional resources
    14.9 Exercises
    15 Quantile regression
    15.1 Introduction
    15.2 Conditional quantile regression
    15.3 CQR for medical expenditures data
    15.4 CQR for generated heteroskedastic data
    15.5 Quantile treatment effects for a binary treatment
    15.6 Additional resources
    15.7 Exercises
    A Programming in Stata
    A.1 Stata matrix commands
    A.2 Programs
    A.3 Program debugging
    A.4 Additional resources
    B Mata
    B.1 How to run Mata
    B.2 Mata matrix commands
    B.3 Programming in Mata
    B.4 Additional resources
    C Optimization in Mata
    C.1 Mata moptimize() function
    C.2 Mata optimize() function
    C.3 Additional resources
    Glossary of abbreviations
    References
    Author index
    Subject index
    List of tables
    List of figures
    16 Nonlinear optimization methods
    16.1 Introduction
    16.2 Newton–Raphson method
    16.3 Gradient methods
    16.4 Overview of ml, moptimize(), and optimize()
    16.5 The ml command: lf method
    16.6 Checking the program
    16.7 The ml command: lf0–lf2, d0–d2, and gf0 methods
    16.8 Nonlinear instrumental-variables (GMM) example
    16.9 Additional resources
    16.10 Exercises
    17 Binary outcome models
    17.1 Introduction
    17.2 Some parametric models
    17.3 Estimation
    17.4 Example
    17.5 Goodness of fit and prediction
    17.6 Marginal effects
    17.7 Clustered data
    17.8 Additional models
    17.9 Endogenous regressors
    17.10 Grouped and aggregate data
    17.11 Additional resources
    17.12 Exercises
    18 Multinomial models
    18.1 Introduction
    18.2 Multinomial models overview
    18.3 Multinomial example: Choice of fishing mode
    18.4 Multinomial logit model
    18.5 Alternative-specific conditional logit model
    18.6 Nested logit model
    18.7 Multinomial probit model
    18.8 Alternative-specific random-parameters logit
    18.9 Ordered outcome models
    18.10 Clustered data
    18.11 Multivariate outcomes
    18.12 Additional resources
    18.13 Exercises
    19 Tobit and selection models
    19.1 Introduction
    19.2 Tobit model
    19.3 Tobit model example
    19.4 Tobit for lognormal data
    19.5 Two-part model in logs
    19.6 Selection models
    19.7 Nonnormal models of selection
    19.8 Prediction from models with outcome in logs
    19.9 Endogenous regressors
    19.10 Missing data
    19.11 Panel attrition
    19.12 Additional resources
    19.13 Exercises
    20 Count-data models
    20.1 Introduction
    20.2 Modeling strategies for count data
    20.3 Poisson and negative binomial models
    20.4 Hurdle model
    20.5 Finite-mixture models
    20.6 Zero-inflated models
    20.7 Endogenous regressors
    20.8 Clustered data
    20.9 Quantile regression for count data
    20.10 Additional resources
    20.11 Exercises
    21 Survival analysis for duration data
    21.1 Introduction
    21.2 Data and data summary
    21.3 Survivor and hazard functions
    21.4 Semiparametric regression model
    21.5 Fully parametric regression models
    21.6 Multiple-records data
    21.7 Discrete-time hazards logit model
    21.8 Time-varying regressors
    21.9 Clustered data
    21.10 Additional resources
    21.11 Exercises
    22 Nonlinear panel models
    22.1 Introduction
    22.2 Nonlinear panel-data overview
    22.3 Nonlinear panel-data example
    22.4 Binary outcome and ordered outcome models
    22.5 Tobit and interval-data models
    22.6 Count-data models
    22.7 Panel quantile regression
    22.8 Endogenous regressors in nonlinear panel models
    22.9 Additional resources
    22.10 Exercises
    23 Parametric models for heterogeneity and endogeneity
    23.1 Introduction
    23.2 Finite mixtures and unobserved heterogeneity
    23.3 Empirical examples of FMMs
    23.4 Nonlinear mixed-effects models
    23.5 Structural equation models for linear structural equation models
    23.6 Generalized structural equation models
    23.7 ERM commands for endogeneity and selection
    23.8 Additional resources
    23.9 Exercises
    24 Randomized control trials and exogenous treatment effects
    24.1 Introduction
    24.2 Potential outcomes
    24.3 Randomized control trials
    24.4 Regression in an RCT
    24.5 Treatment evaluation with exogenous treatment
    24.6 Treatment evaluation methods and estimators
    24.7 Stata commands for treatment evaluation
    24.8 Oregon Health Insurance Experiment example
    24.9 Treatment-effect estimates using the OHIE data
    24.10 Multilevel treatment effects
    24.11 Conditional quantile TEs
    24.12 Additional resources
    24.13 Exercises
    25 Endogenous treatment effects
    25.1 Introduction
    25.2 Parametric methods for endogenous treatment
    25.3 ERM commands for endogenous treatment
    25.4 ET commands for binary endogenous treatment
    25.5 The LATE estimator for heterogeneous effects
    25.6 Difference-in-differences and synthetic control
    25.7 Regression discontinuity design
    25.8 Conditional quantile regression with endogenous regressors
    25.9 Unconditional quantiles
    25.10 Additional resources
    25.11 Exercises
    26 Spatial regression
    26.1 Introduction
    26.2 Overview of spatial regression models
    26.3 Geospatial data
    26.4 The spatial weighting matrix
    26.5 OLS regression and test for spatial correlation
    26.6 Spatial dependence in the error
    26.7 Spatial autocorrelation regression models
    26.8 Spatial instrumental variables
    26.9 Spatial panel-data models
    26.10 Additional resources
    26.11 Exercises
    27 Semiparametric regression
    27.1 Introduction
    27.2 Kernel regression
    27.3 Series regression
    27.4 Nonparametric single regressor example
    27.5 Nonparametric multiple regressor example
    27.6 Partial linear model
    27.7 Single-index model
    27.8 Generalized additive models
    27.9 Additional resources
    27.10 Exercises
    28 Machine learning for prediction and inference
    28.1 Introduction
    28.2 Measuring the predictive ability of a model
    28.3 Shrinkage estimators
    28.4 Prediction using lasso, ridge, and elasticnet
    28.5 Dimension reduction
    28.6 Machine learning methods for prediction
    28.7 Prediction application
    28.8 Machine learning for inference in partial linear model
    28.9 Machine learning for inference in other models
    28.10 Additional resources
    28.11 Exercises
    29 Bayesian methods: Basics
    29.1 Introduction
    29.2 Bayesian introductory example
    29.3 Bayesian methods overview
    29.4 An i.i.d. example
    29.5 Linear regression
    29.6 A linear regression example
    29.7 Modifying the MH algorithm
    29.8 RE model
    29.9 Bayesian model selection
    29.10 Bayesian prediction
    29.11 Probit example
    29.12 Additional resources
    29.13 Exercises
    30 Bayesian methods: Markov chain Monte Carlo algorithms
    30.1 Introduction
    30.2 User-provided log likelihood
    30.3 MH algorithm in Mata
    30.4 Data augmentation and the Gibbs sampler in Mata
    30.5 Multiple imputation
    30.6 Multiple-imputation example
    30.7 Additional resources
    30.8 Exercises
    Glossary of abbreviations
    References




    北京友萬信息科技有限公司,英文全稱:Beijing Uone Info&Tech Co.,Ltd ( Uone-Tech )是中國大陸領先的教育和科學軟件分銷商,已在中國300多所高校建立了可靠的分銷渠道。擁有最成功的教學資源和數據管理專家。如需申請軟件采購及老版本更新升級請聯系我們,咨詢熱線:010-56548231 ,咨詢郵箱:info@uone-tech.cn 感謝您的支持與關注。